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1. INTRODUCTION 

CONVECTMZ heat transfer by permeating fluids through a 
porous matrix has a wide range of applications. For instance 
heat flow studies in the hydrothermal systems of fractured 
rock formations are important in geothermal energy 
development [l-3]. The heat transport mechanism in 
granular materials is also important in insulation technology 
and various industrial operations such as reactors and absor- 
bers [4, 51. Several boundary layer solutions for forced con- 
vection such as over a flat plate, about a circular cylinder 
and a sphere are presently available [4, 61. However, the 
parametric ranges of validity have not been properly ident- 
ified ; particularly the lower bounds of the Peclet number at 
which the transition from conduction to convection takes 
place. Therefore, the present note is intended to address 
this point for a particular convection system ; namely forced 
convection about elliptic cylinders, which includes, as special 
cases, the heat transfer both over a flat plate and about a 
circular cylinder. In this note we first develop an integral 
solution for the heat transfer about elliptic cylinders and 
then clarify a range of its applicability solving the two-dimen- 
sional system of the Darcy model. Heat transfer about an 
elliptic cylinder is important, since this configuration occurs 
when a circular cylinder is subject to oblique flows. This 
problem has a potential application to geothermal well 
design. 

2. INTEGRAL SOLUTION 

We consider convective heat transfer about an isothermal 
cylinder as shown in Fig. 1. First assuming the presence of a 
thin thermal boundary layer along the cylinder surface, the 
energy conservation law in an integral form can be written 
as 

where s and 1 are the local coordinates as indicated in Fig. 
1. Next introducing a temperature profile function F(A), its 
integral Hand the thermal boundary layer thickness 6,(s), 
equation (1) is put in a form 
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Equation (2) can be integrated once to yield 
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FIG. 1. The coordinate system for forced convection about 
an elliptic cylinder. 

where 

L(s) = 
s 

’ U(s) ds. (5) 
0 

Applying the inviscid flow theory, the velocity along the 
elliptic arc is 

WJ) I+k p= 
u, ,/(l +k’cot* 19) 

where k = b/a. Therefore, the thermal boundary layer thick- 
ness is given by 

&(fJ) = {~~~~z~((l-cosO)(l+k’cotzB)). 

(7) 

The local heat transfer coefficient is 

-J=‘(O)(l+k)& 
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The corresponding local Nusselt number is given by 

& = h@)S(@ 
k, 

(9) 

where the arc length S(Q) can be expressed in terms of the 
elliptic integral of the second kind. For instance if 0 < n/2 

.S(@) = aE(J(1 -k2),n/2--f?)1~ for 0 < k < 1 

S(0) = kaE(,/(k’ - 1)/k, 0) for k>l. (10) 

However, it is the average Nusselt number that is more useful 
in engineering applications. The average Nusselt number, 
a, is obtained by integrating equation (8) 

Nu&=4 
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k, 2 > 
Pej” (11) 
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NOMENCLATURE 

a half length of elliptic axis oriented to stream T temperature [K] 
direction [m] AT temperature difference, To - T, [K] 

b half length of elliptic axis perpendicular to stream U streamwise velocity on the cylinder surface 

[ml [ms-‘I. 
E elliptic integral of the second kind 
F temperature profile function 
h heat transfer coefficient [W m- ’ K- ‘1 Greek symbols 
li average heat transfer coefficient [W mm 2 Km ‘1 effective thermal diffusivity [m’s ‘1 
H integral of F with respect to A s”, thermal boundary layer thickness [m] 
k parameter defined by b/a A non-dimensionalized coordinate of q 
k, effective thermal conductivity [W mm ’ Km ‘1 rl coordinate perpendicular to the cylinder surface 
L integral of U with respect to s [ml 
Nu local Nusselt number, hs/k, 0 angle measured in streamwise direction [rad]. 
Nu average Nusselt number, liS/k, 
Pe Peclet number, Uxjcr : where x is the characteristic 

length Subscripts 
s coordinate of streamwise direction along the * dimensional quantities 

cylinder surface [m] 0 conditions on the cylinder surface 
S circumferential length of the cylinder cross-section d characteristic length scale, 2a [m] 

[ml co conditions at infinity. 

(b) 

FIG. 2. Temperature field about a circular cylinder obtained by the complete two-dimensional solution 
(k = I) : (a) Ped = 0.6; (b) Ped = 10. 

where S is the circumferential length which again can be Table 1. Choice of temperature profile function and its effect 

expressed in terms of the elliptic integral on the integral solution 

S = 4aE(J( I - k2). n/2) for O<k< 1 F(A) H --F’(O) J(-HF’(O)/2) 

S = 4kaE(,/(k’- 1)/k, n/2) for k > 1. 
(12) _______ 

1 -2Af2A3-A4 0.3 2 0.548 
It is interesting to note that equation (11) with k = 0 cor- 0.375 1.5 0.530 
responds to a heat transfer correlation over a flat plate [5]. 

1-;A+;A’ 
0.4 1.333 0.516 

The temperature profile cannot be determined uniquely in 
1 -+A+fA4 
1-A 0.5 I 0.5 

the present method. Table 1 shows how large the value of 
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FIG. 3. The Pe, dependency of -% both by the integral solution and by the two-dimensional solution : 0, 
0, A for k = 0.25, 1, 3, respectively, with 16 grid points on the elliptic arc and q , a, A for k = 0.25, 1, 

3, respectively, with 34 grid points. 

J(-HF’(O)/2) varies with temperature profile functions. It 
is found accordingly that the variation due to different 
choices is small enough to ensure the present integral solu- 
tion. Incidentally Cheng [6] obtained 0.564 for the same co- 
efficient in a circular cylinder case (k = 1). 

3. DO-DIMENSIONAL SOLUTION AND 
CONCLUDING REMARKS 

So far we have developed an approximate solution by 
sacrificing the accuracy. In this section we provide the com- 
plete two-dimensional solution by means of finite differences 
to test the accuracy of the simplified solution and to clarify 
its range of applicability. We will not elaborate the numerical 
method in this note, since it is a fairly standard procedure 
today. The representative temperature fields obtained from 
the two-dimensional solution are shown in Figs. 2(a) and (b). 
With a small value of Ped it can be seen that the heat transfer 
mechanism is still largely dominated by heat conduction. On 
the other hand the temperature field changes drastically with 
the increase of Ped as it is shown in Fig. 2(b). The thermal 
boundary layer in this case is clearly defined and, therefore, 
one can expect that the integral solution yields good results 
in this regime. 

We assemble the %Ped correlations for three different 
values of k in Fig. 3. Three lines indicate the results from the 
integral method, while six different symbols are obtained by 
the numerical method. Half filled symbols are generated by 
placing more grid points along the elliptic arc and its outer 
vicinity. It is seen that the lines and the symbols for each k 
agree well when Ped > 2.5. This confirms our earlier obser- 
vations of the temperature fields. The agreement fork = 0.25 
is excellent. As k increases, however, the average Nusselt 
numbers predicted by the integral method tend to exceed 
slightly the numerical results. Despite this fact the integral 
results still fall within a range of 15% off from the numerical 
ones in the presently investigated parametric values. The 
discrepancy may partly originate from the basic assumption 
made in developing the integral solution; the velocity within 
the thermal boundary layer is constant in 7 and equal to the 

slip velocity along the elliptic arc. The geometric bluntness to 
the flow, which becomes more pronounced with the increase 
of k, may eventually prohibit such a simplification on the 
velocity field. The temperature fields by the numerical solu- 
tion with a large k also indicate that the area facing the 
incoming flow can be characterized quite differently from 
that behind the cylinder; the thermal boundary layer there 
does not grow as fast as the front with the increase of Ped. 

In concluding this note it can be said that the compact 
expression for the average Nusselt number derived from the 
integral solution is satisfactory for most engineering pur- 
poses provided that the Peclet number Ped > 2.5. The critical 
Peclet number beyond which the integral solution is valid 
seems to decrease with increasing k. However, the accuracy 
of the integral soiution at large Peclet numbers tends to 
deteriorate as k increases. 
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